Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Med Decis Making ; 43(4): 445-460, 2023 05.
Article in English | MEDLINE | ID: covidwho-2239028

ABSTRACT

INTRODUCTION: Clinical prediction models (CPMs) for coronavirus disease 2019 (COVID-19) may support clinical decision making, treatment, and communication. However, attitudes about using CPMs for COVID-19 decision making are unknown. METHODS: Online focus groups and interviews were conducted among health care providers, survivors of COVID-19, and surrogates (i.e., loved ones/surrogate decision makers) in the United States and the Netherlands. Semistructured questions explored experiences about clinical decision making in COVID-19 care and facilitators and barriers for implementing CPMs. RESULTS: In the United States, we conducted 4 online focus groups with 1) providers and 2) surrogates and survivors of COVID-19 between January 2021 and July 2021. In the Netherlands, we conducted 3 focus groups and 4 individual interviews with 1) providers and 2) surrogates and survivors of COVID-19 between May 2021 and July 2021. Providers expressed concern about CPM validity and the belief that patients may interpret CPM predictions as absolute. They described CPMs as potentially useful for resource allocation, triaging, education, and research. Several surrogates and people who had COVID-19 were not given prognostic estimates but believed this information would have supported and influenced their decision making. A limited number of participants felt the data would not have applied to them and that they or their loved ones may not have survived, as poor prognosis may have suggested withdrawal of treatment. CONCLUSIONS: Many providers had reservations about using CPMs for people with COVID-19 due to concerns about CPM validity and patient-level interpretation of the outcome predictions. However, several people who survived COVID-19 and their surrogates indicated that they would have found this information useful for decision making. Therefore, information provision may be needed to improve provider-level comfort and patient and surrogate understanding of CPMs. HIGHLIGHTS: While clinical prediction models (CPMs) may provide an objective means of assessing COVID-19 prognosis, provider concerns about CPM validity and the interpretation of CPM predictions may limit their clinical use.Providers felt that CPMs may be most useful for resource allocation, triage, research, or educational purposes for COVID-19.Several survivors of COVID-19 and their surrogates felt that CPMs would have been informative and may have aided them in making COVID-19 treatment decisions, while others felt the data would not have applied to them.


Subject(s)
COVID-19 , Decision Making , Humans , COVID-19 Drug Treatment , Prognosis
2.
BMC Med ; 20(1): 456, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2139292

ABSTRACT

BACKGROUND: Supporting decisions for patients who present to the emergency department (ED) with COVID-19 requires accurate prognostication. We aimed to evaluate prognostic models for predicting outcomes in hospitalized patients with COVID-19, in different locations and across time. METHODS: We included patients who presented to the ED with suspected COVID-19 and were admitted to 12 hospitals in the New York City (NYC) area and 4 large Dutch hospitals. We used second-wave patients who presented between September and December 2020 (2137 and 3252 in NYC and the Netherlands, respectively) to evaluate models that were developed on first-wave patients who presented between March and August 2020 (12,163 and 5831). We evaluated two prognostic models for in-hospital death: The Northwell COVID-19 Survival (NOCOS) model was developed on NYC data and the COVID Outcome Prediction in the Emergency Department (COPE) model was developed on Dutch data. These models were validated on subsequent second-wave data at the same site (temporal validation) and at the other site (geographic validation). We assessed model performance by the Area Under the receiver operating characteristic Curve (AUC), by the E-statistic, and by net benefit. RESULTS: Twenty-eight-day mortality was considerably higher in the NYC first-wave data (21.0%), compared to the second-wave (10.1%) and the Dutch data (first wave 10.8%; second wave 10.0%). COPE discriminated well at temporal validation (AUC 0.82), with excellent calibration (E-statistic 0.8%). At geographic validation, discrimination was satisfactory (AUC 0.78), but with moderate over-prediction of mortality risk, particularly in higher-risk patients (E-statistic 2.9%). While discrimination was adequate when NOCOS was tested on second-wave NYC data (AUC 0.77), NOCOS systematically overestimated the mortality risk (E-statistic 5.1%). Discrimination in the Dutch data was good (AUC 0.81), but with over-prediction of risk, particularly in lower-risk patients (E-statistic 4.0%). Recalibration of COPE and NOCOS led to limited net benefit improvement in Dutch data, but to substantial net benefit improvement in NYC data. CONCLUSIONS: NOCOS performed moderately worse than COPE, probably reflecting unique aspects of the early pandemic in NYC. Frequent updating of prognostic models is likely to be required for transportability over time and space during a dynamic pandemic.


Subject(s)
COVID-19 , Humans , Prognosis , COVID-19/diagnosis , Hospital Mortality , ROC Curve , New York City
3.
Nat Commun ; 13(1): 6812, 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2117209

ABSTRACT

Clinical prognostic models can assist patient care decisions. However, their performance can drift over time and location, necessitating model monitoring and updating. Despite rapid and significant changes during the pandemic, prognostic models for COVID-19 patients do not currently account for these drifts. We develop a framework for continuously monitoring and updating prognostic models and apply it to predict 28-day survival in COVID-19 patients. We use demographic, laboratory, and clinical data from electronic health records of 34912 hospitalized COVID-19 patients from March 2020 until May 2022 and compare three modeling methods. Model calibration performance drift is immediately detected with minor fluctuations in discrimination. The overall calibration on the prospective validation cohort is significantly improved when comparing the dynamically updated models against their static counterparts. Our findings suggest that, using this framework, models remain accurate and well-calibrated across various waves, variants, race and sex and yield positive net-benefits.


Subject(s)
COVID-19 , Humans , Prognosis , Pandemics , Cohort Studies , Calibration , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL